Exploring difference between color spaces and color-based image segmentation. Experiments with edge detection.
Exploring different feature spaces - using Fourier shape descriptors, experimenting with wavelet transform, template matching.
Using and interpretation of ROC curves, experiments with PCA and ICA.
Estimating and sampling from densities, learning video background models, building a simple object tracker.
Using LDA for image analysis. Experiments with Support Vector Machines.
Image segmentation with K-means, EM and hierarchical clustering algorithms.
Image morphing.
Final projects included implementation and experiments with existing pattern recognition as applied to computer vision problems. Examples of past successful projects: