Courses:

Multi-Scale System Design >> Content Detail



Study Materials



Readings

Amazon logo Help support MIT OpenCourseWare by shopping at Amazon.com! MIT OpenCourseWare offers direct links to Amazon.com to purchase the books cited in this course. Click on the Amazon logo to the left of any citation and purchase the book from Amazon.com, and MIT OpenCourseWare will receive up to 10% of all purchases you make. Your support will enable MIT to continue offering open access to MIT courses.

SES #TOPICSREADINGS
1Introduction to MuSS and SPM Case Study

Course Goals, Logistics and Expectations

Comparison of MuSS and MoSS Fundamentals

MuSS Example: Overview of SPM Technology
Amazon logo Suh, Nam P. "Complexity Theory Based on Axiomatic Design." Chapter 3 in Complexity: Theory and Applications. New York: Oxford University Press, 2005. ISBN: 9780195178760.
3Macro/Meso-scales Components and Characteristics

Principles, Metrics and Types of Cross-scale Incompatibilities

Incompatibilities of Macro/Meso Parts with Micro/Nano Parts

Integrating Constraints on Macro/Meso-scale Parts
Hale, Layton C. "Principles and Techniques for Desiging Precision Machines." MIT PhD Thesis. 1999, pp. 67-82, and 174-204. (PDF - 1.4 MB)
6Scanning Probe Microscopy Project Introduction

Project Goals and Expectations

Demonstration of 2.76 SPM

Questions, Team Selection and Planning
Pohl, Dieter W. "Some Design Criteria in Scanning Tunneling Microscopy." IBM Journal of Research and Development 30, no. 4 (July 1986): 417.

Lewis, R. A., et al. "Student Scanning Tunneling Microscope." Am. J. Phys. 59, no. 1 (January 1991): 38.

Binning, G., et al. "Surface Studies by Scanning Tunneling Microscopy." Physical Review Letters 49, no. 1 (5 July 1982): 57.

Golovchenko, J. A. "The Tunneling Microscope: A New Look at the Atomic World." Science (New Series) 232, no. 48-53 (4 April 1986): 4746.
10Nominal and Statistical Error Budgets

Principles of Determinism, Accuracy, Repeatability

Kinematic Error Modeling of Rigid-flexible Systems

Nominal and Probabilitic System Error Modeling
Prepost, R. "Scanning Tunneling Microscope." Notes for Physics 407 Advanced Laboratory, University of Wisconsin, April 26 2000, pp. 1-14 (PDF)
12Mechanical Interfaces for Cross-scale Alignment

Principles of Mechanical Constraint

Design of Rigid, Flexible and Rigid-flexible Constraint

Manufacturing and Assembly of Cross-scale Interfaces
Hale, Layton C. Appendix C: Contact Mechanics, in "Principles and Techniques for Desiging Precision Machines." MIT PhD Thesis. 1999, pp. 417-426. (PDF)

Slocum, A. "Kinematic Couplings for Precision Fixturing - Part 1: Formulation of Design Parameters." Precision Engineering 10, no. 2 (April 1988): 86.

Slocum, A. "Kinematic Couplings for Precision Fixturing - Part 2: Experimental Determination of Repeatability and Stiffness." Precision Engineering 10, no. 3 (July 1988): 115.

Slocum, A. "Design of Three-groove Kinematic Couplings." Precision Engineering 14, no. 2 (April 1992): 67.

Optional Readings

Culpepper, M. L., et al. "Design of Integrated Eccentric Mechanisms and Exact Constraint Fixtures for Micron-level Repeatability and Accuracy." Paper accepted for publication in Precision Engineering.

Mangudi, K., and M. L. Culpepper. "Active, Compliant Fixtures for Nanomanufacturing." 2004 Annual Meeting of the American Society for Precision Engineering, Orlando, FL., October 2004, pp. 113 -116.

Slocum, et al. "Flexural Mount Kinematic Couplings and Method." U. S. Patent 5, 678, 944. Granted October 21, 1997.

Culpepper, M. L., et al. "Quasi-kinematic Couplings for Low-cost Precision Alignment of High-volume Assemblies." Transactions of the ASME 126 (May 2004): 456-463.

Culpepper, M. L. "Design of Quasi-kinematic Couplings." Precision Engineering 28 (2004): 338–357.

 








© 2009-2020 HigherEdSpace.com, All Rights Reserved.
Higher Ed Space ® is a registered trademark of AmeriCareers LLC.