Courses:

Dynamics >> Content Detail



Study Materials



Readings

Amazon logo Help support MIT OpenCourseWare by shopping at Amazon.com! MIT OpenCourseWare offers direct links to Amazon.com to purchase the books cited in this course. Click on the Amazon logo to the left of any citation and purchase the book from Amazon.com, and MIT OpenCourseWare will receive up to 10% of all purchases you make. Your support will enable MIT to continue offering open access to MIT courses.

The course will be based on the material presented in the lectures. There is no required textbook, although the following books are recommended.

Amazon logo Baruh, H. Analytical Dynamics. New York, NY: McGraw-Hill, 1998. ISBN: 9780073659770.

Amazon logo Ginsberg, J. H. Advanced Engineering Dynamics. 2nd ed. Cambridge, UK: Cambridge University Press, 1995. ISBN: 9780521470216.

Amazon logo Crandall, S. H., D. C. Karnopp, E. F. Kurtz, Jr., and D. C. Pridmore-Brown. Dynamics of Mechanical and Electromechanical Systems. Malabar, FL: Krieger, 1982. ISBN: 9780898745290.

Amazon logo Moon, F. C. Applied Dynamics. New York, NY: Wiley, 1998. ISBN: 9780471138280.

Amazon logo Greenwood, D. T. Classical Dynamics. New York, NY: Dover Publications, 1997. ISBN: 9780486696904.

Amazon logo ———. Principles of Dynamics. Upper Saddle River, NJ: Prentice-Hall, 1987. ISBN: 9780137099818.

Suggested Readings

The following table lists sample readings, by lecture session, from Baruh's Analytical Dynamics.

LEC #TOPICSREADINGS
1Course Overview

Single Particle Dynamics: Linear and Angular Momentum Principles, Work-energy Principle
1.4, 1.6, 1.7
2Examples of Single Particle Dynamics
3Examples of Single Particle Dynamics (cont.)
4Dynamics of Systems of Particles: Linear and Angular Momentum Principles, Work-energy Principle3.1-3.4
5Dynamics of Systems of Particles (cont.): Examples

Rigid Bodies: Degrees of Freedom
6.1, 6.2, 7.1, 7.2, 1.5
6Translation and Rotation of Rigid Bodies

Existence of Angular Velocity Vector
2.4, 2.5
7Linear Superposition of Angular Velocities

Angular Velocity in 2D

Differentiation in Rotating Frames
2.4, 2.5, 2.6
8Linear and Angular Momentum Principle for Rigid Bodies8.1, 8.2
9Work-energy Principle for Rigid Bodies8.9
10Examples for Lecture 8 Topics
11Examples for Lecture 9 Topics
12Gyroscopes: Euler Angles, Spinning Top, Poinsot Plane, Energy Ellipsoid

Linear Stability of Stationary Gyroscope Motion
10.4
13Generalized Coordinates, Constraints, Virtual Displacements4.1-4.4
15Generalized Coordinates, Constraints, Virtual Displacements (cont.)
16Virtual Work, Generalized Force, Conservative Forces

Examples
4.4, 4.5
17D'Alembert's Principle

Extended Hamilton's Principle

Principle of Least Action
4.7, 4.8
18Examples for Lecture 16 Topics

Lagrange's Equation of Motion
4.9
19Examples for Lecture 17 Topics
20Lagrange Multipliers, Determining Holonomic Constraint Forces, Lagrange's Equation for Nonholonomic Systems, Examples4.10
21Stability of Conservative Systems

Dirichlet's Theorem

Example
22Linearized Equations of Motion Near Equilibria of Holonomic Systems5.3
23Linearized Equations of Motion for Conservative Systems

Stability

Normal Modes

Mode Shapes

Natural Frequencies
5.5
24Example for Lecture 23 Topics

Orthogonality of Modes Shapes

Principal Coordinates
5.6
25Damped and Forced Vibrations Near Equilibria5.7


Other References

Goldstein, H. Classical Mechanics. Cambridge, MA: Addison-Wesley, 1959.

Hartog, J. P. Den. Mechanics. New York: Dover, 1961.

Marion, J. B. Classical Dynamics of Particles and Systems. 2nd ed. New York: Academic Press, 1970.

Landau, L. D., and E. M. Lifshitz. Mechanics. 3rd ed. New York: Pergamon, 1976.

Williams, J. H., Jr. Fundamentals of Applied Dynamics. New York: John Wiley, 1996.

Hartog, J. P. Den. Mechanical Vibrations. New York: McGraw-Hill, 1956.

Meirovitch, L. Elements of Vibration Analysis. New York: McGraw-Hill, 1975.

———. Analytical Methods in Vibrations. New York: Macmillan, 1967.

Pippard, A. B. Response and Stability. New York: Cambridge University Press, 1985.

Nayfeh, A. H., and D.T. Mook. Nonlinear Oscillations. New York: Wiley-Interscience, 1979.

Strogatz, S. H. Nonlinear Dynamics and Chaos. Reading, MA: Addison-Wesley, 1994.


 








© 2009-2020 HigherEdSpace.com, All Rights Reserved.
Higher Ed Space ® is a registered trademark of AmeriCareers LLC.