Courses:

Behavior of Algorithms >> Content Detail



Tools



Tools

Special software is required to use some of the files in this section: .m, .mat.


This code was presented by the professor in order to facilitate the learning process and assist in the better understanding of the course material.  
 
LEC #TOPICSTOOLS
1IntroductionEppBAP.mat (MAT)
2The Condition Numberairfoil1.mat (MAT)
3The Largest Singular Value of a Matrixairfoil2.mat (MAT)
4Gaussian Elimination Without Pivotingart.m (M)
5Smoothed Analysis of Gaussian Elimination Without Pivotingart3.m (M)
6Growth Factors of Partial and Complete Pivoting

Speeding up GE of Graphs with Low Bandwidth or Small Separators
chew_circle.mat (MAT)

convert.m (M)
7Spectral Partitioning IntroducedcrossedGrid.m (M)
8Spectral Partitioning of Planar Graphsdat.mat (MAT)
9Spectral Paritioning of Well-Shaped Meshes and Nearest Neighbor Graphs

Turner's Theorem for Bandwidth of Semi-Random Graphs
epp.mat (MAT)

eppstein.mat (MAT)
10Smoothed Analysis and Monotone Adversaries for Bandwidth and Graph Bisection

McSherry's Spectral Bisection Algorithm
fastfiedler.m (M)

gauss.m (M)
11Introduction to Linear Programming

von Neumann's Algorithm, Primal and Dual Simplex Methods

Duality
graph2A.m (M)

kahan.m (M)

kahan2.m (M)
12Strong Duality Theorem of Linear Programming

Renegar's Condition Numbers
laplacian.m (M)

mcrack.mat (MAT)
13Analysis of von Neumann's Algorithmn.mat (MAT)
14Worst-Case Complexity of the Implex MethodnoPivot.m (M)
15The Expected Number of Facets of the Convex Hull of Gaussian Random Points in the PlaneppConj.m (M)
16The Expected Number of Facets of the Convex Hull of Gaussian Random Points in the Plane (cont.)ppDat.mat (MAT)
17The Expected Number of Facets of the Shadow of a polytope Given by Gaussian random ConstraintsspectShow.m (M)
18The Expected Number of Facets of the Shadow of a Polytope Given by Gaussian Random Constraints: Distance BoundspectShow1.m (M)
19The Expected Number of Facets of the Shadow of a Polytope Given by Gaussian Random Constraints: Angle Bound and Overview of Phase 1v4.mat (MAT)

 








© 2009-2020 HigherEdSpace.com, All Rights Reserved.
Higher Ed Space ® is a registered trademark of AmeriCareers LLC.